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Chapter 6

ENERGY  CONSIDERATION

Introduction:

1.)  Newton's Second Law is nice because it provides us with a technique
for attacking a certain class of problems.  "Focus your attention on the forces
acting on a body," it says, "and you can deduce something about the body's
acceleration."  As useful as this is, there are other ways to approach motion and
physical systems.  We are about to develop a new perspective that focuses on
the energy content of a system.

2.)  One of the techniques theoretical physicists use to characterize a physical
system is to identify all the parameters (i.e., force or displacement or whatever) that
govern a phenomenon of interest, then to multiply those parameters together.  The
resulting number or vector then acts as a watermark that allows an individual to
predict how pronounced the phenomenon in question will be in a particular instance.

a.)  Example:  What governs the change of a body's velocity?  The force
component along the line of motion certainly matters, and so does the
distance over which the force is applied.  If the product of those two
quantities is big, you know the resulting velocity change will be relatively
big.  If small, the velocity change will be relatively small.

3.)  We are about to build a mathematical model that begins with the
very product alluded to in Part 2a, then looks to see where that definition
logically takes us.  Hold on to your skirts, ladies.  This should be fun.

A.)   Work:

1.)  The beginning definition:  As said above, a change in a body's velocity
is governed by the magnitude of the component of force along the line of the
displacement and the magnitude of the displacement itself.  The product of these
two parameters, F// and d, defines the dot product F.d.  This quantity is given
a special name.  It is called work.

2.)  By definition, the work WF done by a constant force F acting on a
body that moves some straight-line distance d (note that d is a vector that de-
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fines both the direction and the magnitude of the displacement of the body) is
equal to:

W = F . d
     =   F   d  cos φ ,

where φ  is the angle between the line of F and the line of d.

3.)  Example:  A box of mass m = 2 kg moving over a frictional floor ( µ k=.3) has a

force whose magnitude is  F = 25 newtons applied to it at a 30o angle, as shown in
Figure 6.1  (note that φ  equals the angle θ  in the sketch).  The crate is observed to
move 16 meters in the horizontal before falling off the table (that is, d = 16i meters).  An
f.b.d. for the forces acting on the block is shown in Figure 6.2.

a.)  How much work does F do before the crate takes the plunge?

WF = F . d

     =           F                      d           cos θ
     = (25 newtons) (16 meters) cos 30o,
     = 346.4 newton-meters.

Note 1:  A newton-meter (or a kg.m2/s2) is the MKS unit for both work
and energy.  It has been given a special name--the JOULE.  We could, therefore,
have written the work done by F as "346.4 joules."



Chapter 6--Energy

167

Note 2:  Work and energy units in the CGS system are dyne-centimeters
(or gm.cm2/s2).  That combination has been given the name ERGES.  In the
English system, work and energy units are in FOOT-POUNDS.

b.)  The above dot product was done from a polar notation approach
(i.e., you multiplied the magnitude of one vector by the magnitude of the
second vector by the cosine of the angle between the line-of-the-two-vectors)
because the force information was given in polar notation.  If the initial
information had been given in unit vector notation, you would have used
the unit vector approach for the dot product.

For the sake of completeness, let us do the problem from that perspective:

i.)  The unit vector representation of the force vector presented in
our problem above is:

          F = (21.65 i + 12.5 j) nts.

ii.)  Dot products executed in unit vector notation are defined as:

F . d = (Fxi + Fyj +Fzk) . (dxi + dyj +dzk)
                  = (Fx dx) + (Fy dy) + (Fz dz).

iii.)  As dz = 0, we have:

 WF = F . d
             =  (Fxi + Fyj) . (dxi + dyj)

              =  (21.65 i + 12.5 j) . (16 i)
              =  (21.65 newtons)(16 meters) + (12.5 newtons)(0)
              =  346.4 joules.

This is the same value we determined using the polar approach.  As
expected, the two approaches yield the same solution.

c.)  In our example, how much work does the normal force do?  The
temptation is to assume that we need to determine the magnitude of the
normal force before doing this, but a little insight will save us a lot of
trouble here.  From the definition of work:

WN = F . d
                =   N   d cos φ .
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The trick is to notice that the angle φ  between N and d is 90o (see the
free body diagram shown in Figure 6.2).  As cos 90o = 0, WN = 0.

In fact, normal forces are always perpendicular to a body's motion.  As
such, their work contributions will always be ZERO.  Normal forces do no
work on a moving body.

d.)  How much work does the frictional force do on the body as it
moves toward the abyss?

i.)  To do this part, we need to determine the normal force N so that
we can determine the frictional force using the relationship   fk = µ kN.

Utilizing both the f.b.d. shown in Figure 6.2 and Newton's Second Law:

  
∑ Fy :

       N + F (sin θ ) - mg = may.

As ay = 0, rearranging yields:

       N = - F (sin θ ) + mg
           = -(25 newtons)(sin 30o) + (2 kg)(9.8 m/s2)
           = 7.1 newtons.

The frictional force will be:

       fk = µ kN
= (.3)(7.1 newtons)
= 2.13 newtons.

ii.)  Noticing that the angle between the line of fk and the line of d

is 180o, the work done by friction will be:

      Wf = fk
. d

            =     f k   d  cos φ

            = (2.13 newtons) (16 meters) cos 180o

            = -34.1 joules.

Note 1:  Yes, work quantities can be negative.  In fact, whenever the angle
between the line of F and the line of d is greater than 90o and less than or equal
to 180o, the cosine of the angle will yield a negative number.
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Note 2:  The negative sign is not associated with direction.  Work is a scalar
quantity--IT HAS NO DIRECTION.  A negative sign in front of a work quantity tells
you that the force doing the work is oriented so as to slow the body down.

4.)  Comments:

a.)  Mathematically, the physics concept of work is rigidly defined.
Hold a 25 pound weight at arm length for fifteen minutes and although
there may be sweat pouring off your brow, you will nevertheless be doing
no work.  Why?  Because for work to occur, a FORCE must be applied to a
body as it moves over a DISTANCE.  If there is no displacement (example:
your arm held motionless for fifteen minutes), no work is done.

b.)  When work is done by a single force acting on an object, it changes
the object's motion (i.e., speeds it up or slows it down).  Again, the key is
motion.  Things become more complicated when many forces act on a
body, but in all cases, having some net amount of work being done
implies there is motion within the system.

c.)  On an intuitive level, forces that do positive work are oriented so
as to make a body speed up; forces that do negative work are oriented so
as to make a body slow down.  It is as though doing positive work puts
energy into the system while doing negative work pulls energy out of the
system. (We will more fully define the idea of energy shortly).

B.)   Work Due to Variable Forces (A Side Point You Won't Be Tested On):

1.)  Let's say you have a ball at the end of
a string (Figure 6.3).  You apply a horizontal
force to the ball to raise it from the vertical to
some angle.  As you do this, you vary the force so
that the ball moves upward on its arc with a
constant speed.  How do you determine the
amount of work you have to do to execute this
maneuver?

2.)  A more general question is, "When
work is done by a force-and-displacement
combination that in some way varies as a body
moves, how do you deal with that?"  After all,
you can no longer write WF = F.d and proceed
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from there.  That relationship holds only when all the parameters stay constant
throughout the motion.

3.)  Answer?  Determine the work done over a tiny section--a section in
which the displacement (we could write this as a vector   ∆r , but instead will use
the notation dr to denote a very tiny "differential" displacement) is so small
that the force is effectively constant over the path.  And once done for one little
section, do it for the next section, and the next, and the next.  And once
completed, add them all up to determine the total work done.

4.)  In short,  we determine the "differential work" (i.e., a very small bit of
the overall whole) dW as

               dW = F.dr.

5.)  Remembering that when you are summing a function that changes
continuously (versus one that changes in discrete lumps), the appropriate
summation sign doesn't look like ∑ , it looks like ∫ , we get the total work--the

sum of the differential bits of work--by executing the mathematical operation
denoted below (this is called integration, as you probably know).  In other words:

   
    
W = dW = F • dr∫∫ .

6.)  There are two ways to evaluate a dot product: using a unit vector
approach and using a polar approach.  Fortunately for you, you will have to
worry about neither!

C.)  The Work/Energy Theorem:

1.)  We would like to relate the total, net work done on an object to its
resulting change in velocity.  This next section is the derivation of just such a
relationship.

Note 1:  The work/energy theorem is a half-way point to where we are
really going.  Understand it, but also understand that there is a more powerful
presentation of the same idea coming up soon.
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Note 2:  You will not be held responsible for duplicating any of the ma-
terial you are about to read in this part (i.e., Part C-1) except the bottom line.  It
is being provided to give you a chance to see how the Calculus is used in physics
derivations, and because it is the easiest way to do the derivation in which we
are interested.

Note 3:  In short, read this part, not for memorization purposes but for
general flow.  Do not forget, though, to understand the bottom line.

a.)  So far, we have been able to calculate the work WF a single force
F does on a moving body.  It isn't too hard to see that the total, net work
Wnet due to all the forces acting on a body will equal the sum of the
individual work quantites done by the individual forces.

What might not be so obvious is that there is another way to get that
net work quantity.  How so?  We could determine the net force Fnet acting
on the body and use it in our general work definition.  Doing so yields:

      Wnet = ∫Fnet 
. dr.

b.)  By Newton's Second Law, the net force on an object will numer-
ically equal the vector ma = m(dv/dt).  If, for ease of calculation, we as-
sume that the net force and the displacement dr are both in the i direction,
we can write the dot product associated with the work definition as:

   

  

W d
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c.)  As the velocity term is time dependent (otherwise, we wouldn't be
able to determine dv/dt), we would like to write the displacement term dx
in terms of time, also.  To do so, note that the rate at which the position
changes with time (i.e., dx/dt) times the time interval dt over which the
change occurs, yields the net change in position dx.  Put more succinctly:
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dx = dx

dt




 dt( )




.

 d.)  Substituting this into Equation A and manipulating as only
physicists will do (i.e., after canceling out selected dt terms), we get:
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e.)  Noticing that dx/dt is the velocity v of the body, and taking the
limits to be from some velocity v1 to a second velocity v2, we can rewrite,
then integrate this expression as:
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f.)  This equation, Wnet  = (1/2)mv2
2 - (1/2)mv1

2, is called the
Work/Energy Theorem.  IT IS THE BOTTOM LINE FOR THIS SECTION.

2.)  The quantity (1/2)mv2 has been deemed important enough to be given a
special name.  It is called the kinetic energy of a body of mass m moving with velocity
v.  Its units are (kg)(m/s)2, or joules--the same units as work (as expected).

a.)  OBSERVATION:  Something is said to have energy if it has the
ability to do work on another "something."

  i.)  Example--a car traveling at 30 m/s:  A car has energy as-
sociated with its motion (i.e., kinetic energy).  If this is not obvious,
imagine stepping in front of one traveling down the road.  Any
damage done to you by the car will be due to the fact that the car has
energy wrapped up in its motion and, as a consequence, has the
ability to do work on you (this gives new meaning to the expression
"getting worked").
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ii.)  Example--a sound wave:  If a sound wave didn't carry energy,
it wouldn't have the ability to do work on the hairs in your ears which,
when moved, produce the electrical signals your brain translates into
sound.

iii.)  In both of the cases cited above, energy is associated with the
ability to do work on something else.

b.)  Kinetic Energy--Example #1:  What must the magnitude of the
velocity of a 1000 kg car be if it is to have the same kinetic energy as a 2
gram bullet traveling at 300 m/s?  Keeping the units the same (i.e.,
converting grams to kilograms so we can use MKS units), we can write:

Solution:

   KEb = (1/2)mbvb
2

= (1/2) (.002 kg) (300 m/s)2

= 90 joules.
If KEb = KEc :

         (1/2)       mc          vc
2  = 90 joules

⇒    (1/2) (1000 kg) (vc)
2  = 90 joules

    ⇒    vc = .42 m/s.

c.)  Kinetic Energy--Example #2:  If one triples a body's velocity, how
does the body's kinetic energy change?

Solution:

KE1 = (1/2)mv1
2

KE2 = (1/2)m(3v1)2

         = 9 [(1/2)m(v1)2].

As would be expected when the kinetic energy is proportional to the
square of the velocity, tripling the speed increases the kinetic energy by
a factor of three-squared, or NINE.

3.)  So what does the Work/Energy Theorem claim?  It maintains that
whenever a net amount of work is done on a body, the body will either acquire or
lose energy.  That change will ALWAYS show itself as a change in the kinetic
energy of the body.
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More succinctly: the net work done on a body will always equal the
change of the body's kinetic energy.

4.)  Example:  At a given instant, a 2
kg mass moving to the right over a frictional
surface has a force F = 5 nts applied to the
left at an angle θ  = 30o  as shown in Figure
6.4.  The average frictional force acting on the
box is fk = 1.5 nts.  If the block is initially
moving with velocity 9 m/s, how fast will it be
moving after traveling a distance 4 meters?

Note:  You could have been given µ k
and been expected to use N.S.L. to determine the normal force N required to use
fk = µ kN.  That twist hasn't been included here for the sake of simplicity, but it
is a perfectly legitimate problem for your next test.

a.)  Someone well-familiar with the work/energy theorem would do the
problem as shown below (if the pieces making up the expressions aren't
self explanatory, a derivation of each follows in Part b):

    Wnet = ∆ KE
   WF           +            Wf         =        ∆ KE

        (-Fdcos θ  )     +         (-fkd)       =       (1/2)mv2
2       -         (1/2)mv1

2

-(5 nts)(4 m)(.866) - (1.5 nts)(4 m) =  (1/2) (2 kg) (v2)2 - (1/2) (2 kg) (9 m/s)2

   ⇒     v2 = 7.59 m/s.

b.)  The following shows how each quantity used in the above equa-
tions was derived:

i.)  The Work/Energy Theorem
states that:

Wnet = ∆ KE.

ii.)  The left-hand side of the
equation is equal to the sum of all
the work done by all the forces act-
ing on the block.  The f.b.d. shown in
Figure 6.5 identifies those forces.
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Note that the work done by the normal force will always equal zero
(the line of motion and the line of the normal are perpendicular to
one another).  The work due to gravity will, in this case, also equal
zero for the same reason.

iii.)  That leaves Wnet = WF + Wfk
.

iv.)  Using the definition of work, we get:

WF = F . d
       =     F  d  cos φ
       = (F) (d) cos (180o - θ )
       = - (F) (d) cos θ .

     and
          Wfk

 = fk . d

       =     F  d  cos φ
       = (fk) (d) cos 180o

       = - fk d.

Note 1:  The angle between the line of motion and the force F is not so ob-
vious--we really did need to write out the work derivation for that force.

Note 2:  Friction pulls energy out of the system, hence the negative work
quantity.  That energy is usually dissipated as heat.

v.)  Putting it all together, we get:

 Wnet = WF + Wfk
= (-Fd cos θ ) + (-fkd).

vi.)  Returning to the Work/Energy theorem:

Wnet = ∆ KE  (Equation A)

      ⇒       (-Fdcos θ ) + (-fkd) = (1/2)mv2
2 - (1/2)mv1

2       (Equation B).

vii.)  We know everything except v2.  Solving for that variable, as-

suming F = 5 newtons, fk = 1.5 newtons, θ  = 30o, d = 4 meters, m = 2

kg, and v1 = 9 m/s, we get:
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   (-Fd cos θ  ) + (-fkd) = (1/2) mv2
2 - (1/2)mv1

2

  -(5 nts)(4 m)(.866) - (1.5 nts)(4 m) =  (1/2) (2 kg) (v2)2 - (1/2) (2 kg) (9 m/s)2

       ⇒     v2 = 7.59 m/s.

Note 1:  Do not memorize the final form of the above equation.  The key is to
understand how we got it.  It is the approach that is important here, not the result!

Note 2:  Going back for another look at the original formulation of the
problem (i.e., the way you ought to present a test problem should you be asked
to use the work/energy theorem to solve a problem):

    Wnet = ∆ KE
WF           +            Wf             =        ∆ KE

          (-Fdcos θ )     +        (-fkd)        =       (1/2)mv2
2       -         (1/2)mv1

2

 -(5 nts)(4 m)(.866) - (1.5 nts)(4 m) =  (1/2) (2 kg) (v2)2 - (1/2) (2 kg) (9 m/s)2

  ⇒      v2 = 7.59 m/s.

Note 3:  For a moment, think about the approach.  It allows you to relate
the total amount of energy-changing work Wnet done on the body to the way the
body's energy-of-motion (its kinetic energy) changes.  Forces come into play in
calculating the "work" part of the relationship.  That means N.S.L. is still
important (you could need it to determine an expression for the magnitude of an
unknown force), but the main thrust is wrapped up in the question, "How does
the system's ENERGY change?"

Note 4:  Although the Work/Energy Theorem is important, we will shortly
be using it to derive an even more important relationship.  We haven't yet
gotten to the "bottom line" of this approach.

D.)  Conservative Forces:

1.)  Background:  A body of mass m moves from y1
(call this Position 1) to y2 (call this Position 2) with a
constant velocity (see Figure 6.6).  How much work does
gravity  do on the body as it executes the motion?

Note:  There are at least two forces acting on the
body in this case, one provided by gravity and one provided
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by an outside agent like yourself.  Our only interest in this problem is in the
work gravity does.

a.)  Noting that the angle between the line of the gravitational force

and the line of the displacement vector is 0o, we can use our definition of
work to write:

      Wgr = Fg . d

       =     F  d  cos 0o

       = (mg) (y1 - y2)(1)            (Equation A),
which could be written:

       = - (mg) (y2 - y1)
       = - (mg) ( ∆ y).

Note:  By definition, ∆ y is the final height y2 minus the initial height y1.

The last two steps of the above derivation were included to make use of this
fact (this particular notation will
come in handy later).

2.)  Let us now replay the
situation with a small alteration.
Assume now that the block moves
from Point 1 to Point 2 following
the path outlined in Figure 6.7.
How much work does gravity do on
the block in this situation?

a.)  Noting that the
total work gravity does will
equal the work done by
gravity through each sec-
tion of the displacement,
we get:

Wgr = WdA
 + WdB

 + WdC
 + WdD

.

b.)  We know that the distance dC = dA + (y1 - y2).  Using that and
the definition of work, we can write:
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Wgr= (mg)(dA)cos180o + (mg)(dB)cos90o +  (mg)(dA+y1-y2)cos 0o + (mg)(dD)cos90o.

c.)  Setting cos 180o= -1, cos 90o= 0, and cos 0o= 1,  this becomes:

Wgr = -(mg) (dA) + (mg) (dA+ y1 - y2)
         = - (mg) (dA) + (mg) (dA) + (mg) (y1 - y2)
         = + (mg) (y1 - y2)
         = - (mg) (y2 - y1).

d.)  Notice that this is the same amount of work gravity did when the
body followed the first path.  In fact, no matter what path the body takes
in moving from Point 1 to Point 2, the amount of work gravity does on the
body will always be the same.

Put another way, the amount of work gravity does on a body as the
body moves from one point to another in the gravitational field is PATH
INDEPENDENT.  FORCE FIELDS THAT ACT THIS WAY ARE
CALLED CONSERVATIVE FORCE FIELDS.

e.)  A corollary to this path independence observation is the fact that
the amount of work a conservative force field does on a body that moves
around a closed path in the field will always be ZERO!

Note:  "Moving around a closed path" means the body ends up back
where it started.

i.)  Reasoning?  Consider a body that moves upward a vertical
distance d.  The work gravity does on the body will be -mgd (negative
because the angle between the displacement vector and the
gravitational force is 180o).  When the body is brought back down to
its original position, the work gravity does is +mgd.  The total work
gravity does on the body as it moves through the round trip is (-mgd +
mgd), or ZERO.

Gravity is a conservative force field.

f.)  An example of a force field that is not conservative is friction.
Common sense dictates that the further a body moves under the
influence of friction, the more work friction will do on the body.  As an
example, anyone who has ever dragged a fingernail across a chalkboard
knows that the further one drags, the more work friction does on his
fingernails (and the more his listening friends will want to murder him).
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From another perspective, frictional forces always oppose the direction of
relative motion between two bodies.  This means that a frictional force will
either do all negative work or all positive work (99% of the time it's negative),
depending upon the situation.  That, in turn, means that the work due to
friction on a body moving around a closed path can never equal zero.

Friction is a non-conservative force.

Note:  For those of you who are wondering if there are other kinds of non-
conservative force fields, all time-varying force fields qualify.  You will not be
asked to deal with time-varying fields until much later; the only non-
conservative force you will have to worry about for now is friction.

E.)  Preamble to the Gravitational Potential Energy Function:

Note 1:  We are about to consider a concept you have heard about in past
science classes but that was most probably never addressed in a truly rigorous
way.  To eliminate as much intellectual stress as possible, my suggestion is
that you forget everything you have ever been told about potential energy and
start from scratch with the presentation that follows.

Note 2:  You will not be held responsible for duplicating any of the ma-
terial you are about to read except the bottom line.  BUT, if you don't understand
the following material you won't understand the bottom line, and if you don't
understand the "bottom line" you will undoubtedly find yourself totally lost
later.  Therefore, read the next section, not for memorization purposes but for
content.  Follow each step as it comes without projecting ahead.  When you
finally get to the end-result, read back over the material to be sure you know
what assumptions were made in proceeding to the endpoint.

1.)  Consider a conservative force field--gravity, for instance.  A body of
mass m moves from y1 (call this Position 1) to y2 (call this Position 2) with a
constant velocity.  How much work does the gravitational force field do on the
body as the body so moves?

a.)  This was the question posed at the beginning of the
"Conservative Forces" section.  The solution was found to be:

Wgr = - (mg) (y2 - y1)      (Equation A).
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b.)  One of the important conclusions drawn from that section was
the observation that as a body moves from Point 1 to Point 2 in a gravi-
tational field, the work done by the field is not dependent upon the path
taken.  Gravity is a conservative force.

c.)  With that in mind, let's consider a novel idea.  If the path counts
for nothing--if the endpoints are all that are important when determining
the work gravity does--might it not be possible to somehow define a
number N1 that can be attached to Point 1, and a number N2 that can be
attached to Point 2, and cleverly make them such that the difference
between them would yield the amount of work done by gravity as the body
proceeds from Point 1 to Point 2?

d.)  This surely is a strange idea, but
whether you see the usefulness of it or not, could
it be done?

The answer is "yes."

e.)  Example:  Figure 6.8 shows just such a
possible situation.  Assuming the numbers have
been chosen appropriately, the work done on the
body due to gravity as the body goes from Points
1 to 2 should be:

 Wgr = (N2 - N1)

           = [(12 joules) - (25 joules)]
      = -13 joules.

f.)  There is only one difficulty with this.  We have assigned zero to
ground level making all numbers above ground level increase with elevation.
That means that when a body moves from a higher (big number) position to
a lower (small number) position, the difference between the second number
and first number (Nlow - Nhi) will be negative (just as we found in our
example).  The problem here is that if we proceed from high to low (i.e., move
in the direction of mg), the work gravity does should be positive!

To make our scheme work, we need to modify our original model by
re-defining the "numbers expression."  We will do so by putting a negative
sign in front of the relationship.  This yields:

  Wgr = - (N2 - N1)                      (Equation B)

= - [ (12 joules) - (25 joules) ]
= + 13 joules.
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g.)  With our modification, we now have numbers attached to our
initial and final points that, when correctly manipulated, give us the
work done by gravity as the body moves from Point 1 to Point 2.

Note:  Kindly notice that we can do this only because the gravitational
force is conservative and, hence, the work done due to gravity is path inde-
pendent.  If the work done depended upon the path taken, none of this would
make any sense at all.

h.)  It would be nice to have some handy mathematical function that
would allow us to define our N numbers.  Fortunately, we already have
such a function for gravity.  Using the definition of work, the work done by
gravity on a body moving from Point 1 to Point 2 in a gravitational field is:

      Wgr = - (mgy2 - mgy1).

We determined this expression earlier.
                    

i.)  By comparing this equation with our "number expression":

Wgr = - (N2 - N1),

we find by inspection that:

         N2 = mgy2      and      N1 = mgy1.

j.)  Written in general (i.e., written as mgy where y is the vertical
distance above some arbitrarily chosen zero-height level--the ground in our
example), this function is important enough to be given a special name.
It is called the "gravitational potential energy" function, normally
characterized as Ug.

k.)  Bottom Line:  Although we have done this analysis using a gravita-
tional force field, EVERY conservative force field has a potential energy function
associated with it.  Furthermore, there is a formal, Calculus-driven approach
for deriving potential energy functions which will be presented shortly.

Whether you are given a potential energy function or have to derive it,
understand that when a body moves through a conservative force field the
amount of work done by the field as the body moves from Point 1 to Point
2 will always be:
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Wfield = - (Upt.2 - Upt.1)
   = - ∆ U.

This is the bottom line on potential energy.

F.)  Gravity Close to the Surface of the Earth:

1.)  Under normal circumstances, the potential energy function
associated with a force field should be zero where the field is zero (you will run
into a number of examples of this shortly).  The problem with gravity close to the
surface of the earth is that there is no place where the gravitational force is zero.
What that means is that you can assign the "zero potential energy point" for a
given problem.

2.)  Put a little differently, gravitational potential energy close to the
surface of the earth is not an absolute quantity.

3.)  In the off-chance this isn't obvious, consider the table and chalk
shown in Figure 6.9.

a.)  If we take y to be
measured from the table's top
(i.e., y1 in the sketch), we are
safe in saying that the amount
of potential energy the chalk has
is equal to mgy1.  If we want to
determine the amount of work
gravity does on the chalk as it
rises to a second point at y2, we
can use the above-derived ex-
pression relating gravitational
potential energy to the work
gravity does, and get:

Wgr = - ∆ Ugr

         = - (U2 - U1)
          = - (mgy2 - mgy1).

b.)  Could we have used the floor as the zero potential energy level,
making all y measurements from there?
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ABSOLUTELY!  The
chalk would be assigned an
initial potential energy value
of mgy3 (see Figure 6.10),
etc., and the work calculation
would proceed as before:

Wgr = - ∆ Ugr
= - (  U4    -    U3   )
= - (mgy4 - mgy3).

c.)  The amount of work
gravity does as the chalk
rises to its new position can
be determined correctly using
either approach (notice that
y2 - y1 is numerically equal
to y4 - y3).

Why does this seemingly nonsensical situation exist?  Because what
is important is not the amount of gravitational potential energy an object
has when at a particular point.  What is important is the change of the
gravitational potential energy of a body as it moves from one point to
another.  That is what allows us to determine the amount of work done on
the body as it moves through the gravitational field.  Making that work
determination is the ONLY USE you will ever have for potential energy
functions, ever.

2.)  A Work/Energy-Theorem, Potential-
Energy Example Problem:  A plane oriented at
30o above the horizontal moves at 300 m/s.  It is
1200 meters above the ground when a coke bottle
becomes free and sails out of the window   ′a  la the
movie The Gods Must Be Crazy  (see Figure 6.11).
Neglecting air friction, how fast will the bottle be
moving just before it hits the ground?

a.)  The work/energy theorem states
that the net work done on a body must
equal the body's change in kinetic energy
( ∆ KE).  Mathematically, this is stated as:
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Wnet = ∆ KE.

b.)  In this case, the Wnet consists solely of the work done by gravity

Wg.  Coupling this with the fact that there is a change in the kinetic

energy ∆ KE = (1/2)mv2
2- (1/2)mv1

2, we can write:

Wg = (1/2)mv2
2 - (1/2)mv1

2.

c.)  If we had to calcu-
late the work due to
gravity using only the
definition, the task would
require Calculus (the
bottle's direction of
motion is constantly
changing, which means
the angle between the
gravitational force and
the displacement is
constantly changing--see
Figure 6.12), which would
be nasty.  Fortunately for
us, we can easily
determine the work
gravity does in this situation because:

i.)  We know the potential energy function for gravity is mgy; and

ii.)  We know that:

     Wg = - ∆ Ug = - (U2,g - U1,g).

d.)  Utilizing these facts, we find:

           Wg             = (1/2)mv2
2 - (1/2)mv1

2

            - (  U2     -    U1   ) = (1/2)mv2
2 - (1/2)mv1

2

            - (mgh2  -   mgh1) = (1/2)mv2
2 - (1/2)mv1

2.
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e.)  Solving for v2 yields:

      v2 = [v1
2 - 2 (gh2 - gh1)]1/2.

f.)  Putting in the numbers yields:

        v2 = [ (300 m/s)2 - 2 [(9.8 m/s2)(0 m) - (9.8 m/s2)(1200 m)] ] 1/2

      = 336.9 m/s.

Note 1:  As usual, memorizing this result is a waste of time.  What is
important is the technique involved.  Whenever you need to know how much
work a conservative force does on a body moving through its force field, that
quantity will always equal - ∆ U, where U is the potential energy function
associated with the field.

Note 2:  The equation derived using energy considerations and presented
above in Section 2e should look familiar.  Remember v2

2 = v1
2 + 2a(y2-y1)?  It

was one of your kinematics equations.

G.)  Potential Energy Functions in General:

1.)  Although most students associate potential energy with gravitational po-
tential energy, there are many other conservative force fields.  For instance, an ideal
spring produces a force that is, at least theoretically, conservative.  All conservative
forces have potential energy functions associated with them.

Their use?
If you want to know how much work a conservative force field does on a

body moving from one point to another within the field, and if you know the field's
potential energy function, the work done by the field will always equal minus the
change of the potential energy function between the start and end points, or:

       Wcons.force = - ∆ U.

H.)  FYI, Deriving the Potential Energy Function for a Known Force
Field (i.e., Something You Will Not Have to Reproduce on a Test):

1.)  We created the idea of a potential energy function out of the need to
easily determine the amount of work gravity does as a body moves from one
point to another in a gravitational field.  We then concluded that any conser-
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vative force can have a potential energy function associated with it.  The only
requirement?  That:

     Wcons.fld. = -∆U (Equation A),

where the symbol U is used to denote the potential energy function associated
with the conservative force field with which we happen to be dealing.

2.)  Gravity close to the surface of the earth does not have a zero point,
but gravity far from the earth does.  The force associated with a spring also has
a zero point (i.e., its equilibrium point).  I could show you the Calculus driven
technique by which the potential energy functions for these force fields are
derived, but because you won't have to reproduce any of such derivations on a
test, I will present only the bottom lines.

3.)  The gravitational force between two masses m1 and m2 whose centers

of mass are a distance r units apart is given by the expression

     
    
Fg = −G

m1m2

r2
r ,

where G is called the universal gravitational constant and r is a unit vector in
the radial direction (gravitational forces are always directed along a line
between the two bodies--i.e., in a radial direction).

The question?  What is the potential energy function for this force field?

a.)  To begin with, notice that the force function is zero when r = ∞.
This suggests that the potential energy function for this force should be
zero at infinity.

b.)  In fact, the potential energy function for gravity between two
object (including the earth and any other object near or far) is

  
U(r) = −G

m1m2

r

c.)  NOTICE:  This is the potential energy function for gravitational
fields anywhere.  Does it work?  Let's see.  According to the theory, we
should be able to calculate the amount of work gravity does as a body
moves from one point to another in a conservative force field using:
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W = -∆U.

Assume your mass is 85 kg.  You're in an elevator moving upward from
ground level to a position 200 meters above the ground.  How much work
does gravity do as you move?

i.)  Using the gravitational potential energy function we derived for
situations near the surface of the earth (i.e., Umg,near = mgy, where
we can assume ground level is the zero potential energy level), the
amount of work done by gravity is found to be:

Wgrav = -[        U(y2 = 200)                 - U(y1 = 0)]
     = -[               mgy2                    -     mgy1   ]

 = -[(85 kg)(9.8 m/s2)(200 m) -         0      ]
 = -166,600 joules.

ii.)  We would like to do the same problem using the general po-
tential energy function for gravity (i.e., -Gm1m2/r2, where r is the
distance between the centers of mass of the interacting objects--in
this case, you and the earth).  To do so, note that:

--the universal gravitational constant G = 6.67x10-11 m3/kg.s2;
--the mass of the earth is me = 5.98x1024 kg;

--the radius of the earth is re = 6.37x106 m.

iii.)  Remember how potential energy functions are used.  If you
want the amount of work done by a conservative field as a body
moves from one point to another in the field, evaluate the potential
energy function for the field AT THE START POINT and AT THE
END POINT, then take minus the difference of that amount.  The
value you end up with will be the work done by the field during the
motion.  Up until now, all you have worked with has been the simple
version of gravitational potential energy--a function with an ad-
justable zero level.  You are about to use a potential energy function
with a fixed zero point (remember, U = 0 at infinity for this function).
In other words, even though you may be in the habit of treating
ground level as the zero point, that isn't true of this function!  With
that in mind:

iv.)  If we let re be the distance between the earth's center and your
center of mass when standing on the earth's surface (this is
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essentially the radius of the earth), then re + 200 will be the distance
between your center of mass when at 200 meters above the earth's
surface.  We can write:

       Wgrav = - [          U(re + 200)             -           U(re )        ]

          = - [[-Gmemyou/(re + 200)]  - [-Gmemyou/(re)]].

v.)  Pulling out the constants, eliminating the units for the sake of
space, and wholly ignoring significant figures, this becomes:

  Wgrav =       G                   me            myou[1/(re + 200)     - 1/      (re)         ]

          = (6.67x10-11) (5.98x1024) (85) [1/(6,370,200) - 1/(6,370,000)]
          = 5322220652 - 5322387755
          = -167,103 joules.

vi.)  Using the near Earth potential energy function in Part d-i
above, we found that gravity did -166,600 joules of work.  If we had
not used rounded values for G, re, and me, these two numbers would
have been the same.

vii.)  Bottom Line:  Our approach for determining potential energy
functions generates functions that work as expected.  LEARN THE
APPROACH!

Note:  The "near earth" gravitational force on you (i.e., your weight) is

myoug.  So why does the general gravitational force 
  
G

myoumearth

r 2
 manage to

come out equalling the "near earth" gravitational force myoug when you are close
to the earth's surface?  Remembering that the distance between your center of
mass and the earth's center of mass is essentially the radius re of the earth,
and that this will be true whether you are on the earth's surface or several

meters above the earth's surface, the evaluation of the expression 
  
G

mearth

re
2

turns out to numerically equal 9.8m/s2.  In other words,

  
myou G

mearth

re
2









 = myou ( 9.8m/s2 ) = myou g.  Pretty cool, eh?
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I.)  The Forces Due to and Potential Energy Function of an Ideal Spring:

1.)  An ideal spring loses no energy as it oscillates back and forth.  The
amount of work such a spring does through one full cycle is zero, which is to say
that the force it provides is a conservative one.  As such, we can derive a
potential energy function for an ideal spring.

2.)  The position of a mass attached to an ideal spring is measured from
the system's equilibrium position.  This is the position at which the force on the
mass due to the spring is zero.  It has been experimentally observed that when a
mass is attached to a spring and the spring is elongated or compressed:

a.)  The magnitude of the spring force exerted on the body is propor-
tional to the spring's displacement from the equilibrium, and

b.)  The direction of the
force always points toward
the equilibrium position.

c.)  Assuming the force is
in the x direction, these
observations can be mathe-
matically expressed as:

     F = -kxi,

where k is a constant that de-
fines the amount of force re-
quired to compress the spring
one meter, and x is the
distance the spring is displaced from its equilibrium position (see Figure
6.13).

Note:  The displacement term x is really a ∆ x, but as usual the con-
vention is to assume that the initial position is at x = 0.  This leaves the dis-
placement term as ∆ x = x - 0 = x.

3.)  Noting that the force function is ZERO at x = 0, convention dictates
that the potential energy function for a spring must be defined as ZERO at x = 0.
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4.)  If we had done the derivation, we would have found that the potential
energy function for an ideal spring was/is

              Usp = (1/2)k(x)2.

With that information, we can now use that function in any problem in which an
ideal spring does work.

5.)  A Problem Involving a U Function Other Than Gravity (i.e., that of a
Spring):  A 2 kilogram block on a horizontal surface is placed without at-
tachment against a spring whose spring constant is k = 12 nt/m.  The block is
made to compress the spring .5 meters (see Figure 6.14 below).  Once done, the
block is released and accelerates out away from the spring.  If it slides over 2
meters of frictionless surface before sliding onto a frictional surface, and if it
then proceeds to travel an additional 13 meters on the frictional surface before
coming to rest, how large was the frictional force that brought it to rest?

Note:  Do not get too comfortable with using the work/energy theorem.  It
is an OK approach in some cases, but there is a much easier way to deal with
the kind of information given in this problem using the concept of energy
conservation.  That alternative approach will be presented shortly.  This
example is given SOLELY to allow you to see a potential energy function other
than gravity in a problem.
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a.)  Looking at this problem from a work/energy perspective, we need
to determine two different quantities: the net change of the body's kinetic
energy (i.e., its final kinetic energy minus its initial kinetic energy), and the
amount of work done by all forces acting on the body between the
beginning and end of its motion.  In short, we need to determine:

Wnet = ∆ KE.
b.)  As the mass does not rise or fall in this problem, gravity does no

work and there is no reason to include the potential energy function  for
gravity in the work/energy expression.

c.)  Writing this out as you would on a test (should you be asked to
use the work/energy theorem on a test), we get:

                    Wnet = ∆ KE
⇒      Wsp            +          Wfr     =      KE2        -       KE1
         -∆Usp           +     (-fkdfr)    = (1/2) m v2

2 - (1/2 )m v1
2

-[0 - (1/2)kx2]      +    (-fkdfr)     = (1/2) m v2
2 - (1/2 )m v1

2

        .5(12 nt/m)(.5 m)2 + (-fk)(13 m) = .5(2 kg)(0)2 - .5(2 kg)(0)2

       ⇒              fk =  .115 nts.

Note:  Once again, THE WORK DONE BY A CONSERVATIVE FORCE
FIELD ON A BODY MOVING THROUGH THE FIELD WILL ALWAYS
EQUAL -(U2 - U1), ASSUMING THE POTENTIAL ENERGY FUNCTION

USED IS THE PROPER FUNCTION FOR THE FORCE FIELD.

J.)  MODIFIED CONSERVATION OF ENERGY Theorem: Or, Getting to
the Bottom of the Bottom Line:

Note:  We are about to put the work/energy theorem into a considerably
more useful form.  To do so, we will spend some time with the derivation behind
"the bottom line."  You will not be asked to duplicate this derivation, but if you
do not understand it, you will most probably not be able to use the end result to
its full extent.  Read the following section; think about it; then read it again.  It
is important that you know what is being done here.

1.)  Consider an object with numerous forces acting on it as it moves from
Point A to Point B.  The work/energy theorem relates the amount of work done on
the body to the body's change of kinetic energy.  Writing this out, we get:
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Wnet = ∆ KE.

The left-hand side of this equation is simply the sum of the work done by
all the forces acting on the body.  This equation could be written as:

   WA + WB + WC + WD + . . . = ∆ KE,

where WA is the work done by force FA, WB is the work done by force FB, etc.
For the sake of argument:

a.)  Assume forces FA and FB are conservative forces with known

potential energy functions UA and UB.  If we define the body's potential

energy when at Point 1 due to force field FA as UA,1, and the potential

energy when at Point 2 due to force field FA as UA,2,  then the work done

by FA as the body moves from Point 1 to Point 2 in the force field will be:

WA = - ∆ UA
        = - ( UA,2 - UA,1).

Likewise, the work done on the body due to FB will be:

WB = - ∆ UB
        = - ( UB,2 - UB,1).

b.)  Assume the forces associated with WC and WD are either non-

conservative forces that have no potential energy function or conservative
forces for which we don't know the potential energy function.  If that be the
case, we will have to determine those work quantities using:

 WC = FC . d
and

WD = FD . d.

c.)  Having made these assumptions, we can write the work/energy
theorem as:

      WA + WB + WC + WD + . . . = ∆ KE,
or

             [- (UA,2 - UA,1)] +  [- (UB,2 - UB,1)] + (FC . d) + (FD . d) + . . . = (1/2)mv2
2- (1/2 )mv1

2.
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d.)  Multiplying the potential energy quantities by the -1 outside their
parentheses, we get:

            (-UA,2 + UA,1) + (-UB,2 + UB,1) + (FC . d) + (FD . d) + . . . = (1/2)mv2
2 - (1/2 )mv1

2.

e.)  The expression we end up with has:

i.)  A number of potential energy functions evaluated at t1 (i.e.,
when the body is at Point 1);

ii.)  A number of potential energy functions evaluated at t2 (i.e.,
when the body is at Point 2);

iii.)  The kinetic energy function evaluated at t1;

iv.)  The kinetic energy function evaluated at t2;

v.)  And all the other work done on the body that we haven't been
able to keep track of using potential energy functions, but that has
been done on the body as it moved from Point 1 to Point 2.

f.)  If we move all the time 1 terms to the left-hand side of the
equation and all the time 2 terms to the right-hand side, our equation
will look like:

   (1/2 )mv1
2 + UA,1 +  UB,1 +  (FC . d) + (FD . d) + . . . = (1/2)mv2

2 + UB,2 + UA,2.

g.)  What we have now is the kinetic energy of the body at Point 1 added
to the sum of the potential energies attributed to the body while at Point 1
added to all the extraneous work done on the body (extraneous in the sense
that we haven't kept track of it with potential energy functions) between
Points 1 and 2 equaling the kinetic energy of the body when at Point 2 added
to the sum of the potential energies of the body while at Point 2.

Written in shorthand, this is:

   KE1 + ∑ U1 + ∑ Wextraneous = KE2 +  ∑ U2.

h.)  This is called the modified conservation of energy equation.  If we
identify the sum of the kinetic and potential energies of a body while at a
particular point (that is, KE1 + ∑ U1) as "the total mechanical energy
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E1" of the body at that point in time, the modified conservation of energy

equation can be written in an even more compact way:

      E1 + ∑  Wextraneous  =  E2.

 In this form, the equation states that the total energy of the body
when at Point 1 will equal the total energy of the body when at Point 2,
modified only by the "extraneous work" done to the body as it moves from
Points 1 to 2.  In other words, this equation keeps track of the ENERGY
the body either has or has-the-potential-of-picking-up as it moves from
one point to another.

Note:  The word "conserved" here means "not changing with time."  If we
have no extraneous bits of work being done as the body moves from Point 1 to
Point 2, which is to say we know the potential energy functions for all the forces
doing work on the body as it moves and there are no non-conservative forces
acting on the system, we can write E1 = E2.  This is the true "conservation of
energy" equation.  That equation is the mathematical way of saying, "The total
energy of the system will always be the same--the body's kinetic energy may
change and its potential energy may change, but the sum of the kinetic and
potential energies will be a constant throughout time."

By adding the possibility of dealing with non-conservative or oddball
conservative forces (one for which we haven't a potential energy function), the
"modified" conservation of energy equation is extremely powerful.  It allows for
the analysis of situations in which E1 and E2 are not equal but are related in a
deducible way.

2.)  Bottom Line:  When approaching a problem from the standpoint of
energy considerations:

a.)  Determine the amount of kinetic energy the body has to start with

(this may be nothing more than writing down (1/2 )mv1
2) and place that

information on your sketch next to the body's position at Point 1.  Do the
same for Point 2.

b.)  Identify any conservative forces for which you know potential
energy functions.  Once identified, determine the amount of potential
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energy the body has when at Point 1 and put that information on your
sketch.  Do the same for Point 2.

Note:  If gravity is the only force with potential energy function in the
problem, this last step may amount to nothing more than writing U1 = mgh1
next to Position 1 on your sketch with a similar notation at Position 2.

c.)  Identify any forces that do work on the body as it moves from
Point 1 to Point 2, but for which you don't have potential energy functions.
Determine the amount of work they do over the motion and place that
information in a convenient spot on your sketch.

d.)  Take the information gleaned from Parts a, b, and c, and after
writing out KE1 + ∑  U1 + ∑  Wextraneous = KE2 +  ∑  U2, plug the
information in where appropriate.  Solve for the unknown(s) in which you
are interested.

3.)  A Simple Example:  Consider a ball of mass .25 kilograms positioned
at y1 = +4 meters above the ground.  It is given an initial upward velocity of 6

m/s at a 60o angle with the horizontal.  The ball freefalls, finally reaching y2 = 1

meter above the ground.  If friction does 7 joules of work on the ball during the
trip, how fast is the ball moving when it gets to y2 = 1 meter?

a.)  Consider the
sketch in Figure 6.15.
In it is placed all the
information needed to
solve this problem. WE
WILL ASSUME THE
ZERO POTENTIAL
ENERGY LEVEL is
AT THE "FINAL
POSITION" (i.e., y2).

b.)  Remembering
that the work due to
friction is negative and
that the zero potential
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energy level is at y2, we can begin with the modified conservation of energy

equation and write:

KE1 + ∑  U1 + ∑  Wextraneous = KE2 +  ∑  U2.

c.)  Spreading out that equation to see what goes where, then solv-
ing, we get:

            KE1             +                      ∑  U1                          + ∑  Wext =       KE2           +  ∑  U2
       (1/2)mv1

2        +                   mg(y1 - y2)                    +      Wfr   =  (1/2)mv2
2      +     0

.5(.25 kg)(6 m/s)2 + (.25 kg)(9.8 m/s2)[(4 m) - (1 m)] + (-7 j)      = .5(.25 kg)v2
2  +   0

⇒     v2 = 6.23 m/s.

Note 1:  Important point:  Notice the angle had nothing to do with this
problem.  As far as the concept of energy is concerned, it does not matter
whether the body is moving downward or upward or sideways.  The amount of
energy the body has at a given instant is solely related to the body's mass and
velocity, NEVER ITS DIRECTION.  As such, do not waste time breaking velocity
vectors into their component parts.  All you need is the velocity's magnitude.

Note 2:  You could just as easily have taken ground level to be the zero
potential energy level.  If you had, the initial potential energy would have been
mgy1 instead of mg(y1 - y2) and the final potential energy would have been
mgy2 instead of zero.  Both ways work (if you don't believe me, try it); there is no
preferred way to attack the problem.

4.)  Example You've Already Seen Done, Done the Easy Way:   A 2 kilo-
gram block on a horizontal surface is placed without attachment against a
spring whose spring constant is k = 12 nt/m.  The block is made to compress
the spring .5 meters (see Figure 6.16).  Once done, the block is released and
accelerates out away from the spring.  If it slides over 2 meters of frictionless
surface before sliding onto a frictional surface, and if it then proceeds to travel
an additional 13 meters on the frictional surface before coming to rest, how large
is the frictional force that brought it to rest?

Note:  All the information concerning the energy state of the system when
the block is at Point 1 is shown on the sketch.  The same is true for Point 2.
Even the work done by forces not accommodated by potential energy functions is
written onto the sketch.  All the information you need to use the modified
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conservation of energy expression is laid out in its entirety.  All that has to be
done from there is to put the information into the c. of e. equation.

a.)  According to the modified conservation of energy expression:

       KE1        +        ∑  U1                + ∑  Wext =     KE2        +        ∑  U2
  (1/2)mv1

2   + [U1,gr +    U1,sp  ]  +   [Wfk
]   = (1/2)mv2

2 + [U2,gr + U2,sp]

        0             +[    0     + (1/2)kx2]  + [-fkdfr]   =        0         +  [    0     +    0   ]

⇒    fk = [        k           x2       ] / [2     dfr    ]

  = [(12 nt/m)(.5 m)2] / [2(13 m)]
  = .115  nts.

b.)  When this example was done in the work/energy section, you were
told not to get too attached to the work/energy approach.  Why?  Because
another approach was coming that was purported to be easier to use.

You have now seen the other technique--the modified conservation of
energy approach.  What makes it so easy?  It is primarily end-point
dependent.  Indeed, you have to manually determine the amount of work
done on the body in-between the end-points if you have forces for which
you haven't potential energy functions, but that is considerably easier
than hassling with work calculations for each force on an individual
basis.

Bottom line:  In short, the modified conservation of energy approach is
easier to execute.  Get to know it, understand it, practice it, and you'll
learn to love it!
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5.)  A More Complex Example:  A block
of mass m is pressed against an unattached
spring whose equilibrium position is d1 = 3

meters above ground and whose spring constant
is k = 25.6mg/d1 (see Figure 6.17). The block is
made to compress the spring a distance d1/8
meters.  The block is additionally forced against
the side-wall by your little sister.  The force she
applies (Fsis) has a magnitude of mg/4 (no, mg

does not stand for milligrams; it is the weight of
the block--mass times gravity) at an angle of 60o

with the vertical.  The wall is frictional with a
coefficient of friction of µ k = .4 (see Figure

6.18).  Once released by you (your sister is still
pushing), the block falls.  How fast will it be
traveling when it reaches Position 2 a distance d1/4 from the ground?

a.)  We need an
equation that will allow
us to determine the
velocity of the block
after it has moved to y =
d1/4.  As the conser-

vation of energy ap-
proach is related to dis-
tances traveled (these
are wrapped up in the
work calculations and
potential energy func-
tions) and velocities
(these are wrapped up
in the kinetic energy
calculations), we will try
to use that approach
here.

Note 1:  As all our distance measurements are relative to the ground, we
might as well take the zero potential energy level for gravity to be at ground-
level.
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Note 2:  When the block is released, it is accelerated downward by grav-
ity and the spring but is also retarded in its acceleration by friction and your
little sister.  We know potential energy functions for gravity and the spring, but we
have no function for your sister's force or friction.

b.)  In its bare bones form, the modified conservation of energy equa-
tion yields (justification for each part is given below in Section 5c):

KE1 +                   ∑  U1                       +                    ∑  Wext                          =     KE2       +     ∑  U2
0 + [   U1,gr        +        U1,sp           ]  + [       Wsis                +       Wfk        

] = (1/2)mv2
2 + [U2,gr + 0]

0 + [mg(d1 + d1/8) +        (1/2)kx2         ] + [       Fsis
.dsis           +     (-fk)(dfr)     ]  = (1/2)mv2

2   + [mg(d1/4) + 0]

0 + [   mg(9d1/8) +.5(25.6mg/d1)(d1/8)2] + [(mg/4)(7d1/8)cos120o + (-µkN)(7d1/8)]  = (1/2)mv2
2   +  [.25mgd1 + 0]

0 + [(1.125mgd1) +         (.2mgd1)        ] + [         (-.11mgd1)        +   (-.074mgd1) ] = (1/2)mv2
2   + [.25mgd1]

      ⇒        v2 = [1.78 gd1]1/2

= [1.78 (9.8 m/s2) (3 m)]1/2

      = 7.23 m/s.

c.)  If the pieces used in the above expression are obvious, skip this sec-
tion and continue onward.  If they are not obvious, the following should help:

i.)  At Point 1, as the block is not initially moving:

 KE1 = 0.

ii.)  At Point 1, the block has gravitational potential energy

    U1,gr= mg(d1+d1/8) = 1.125mgd1

and spring potential energy

   U1,sp= (1/2)kx2 = (1/2)(25.6mg/d1)(d1/8)2 = .2mgd1.

iii.)  At Point 2, the block has gravitational potential energy

  U2,gr= mg(d1/4) = .25mgd1.
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iv.)   At Point 2, the block has no spring potential energy (as the
spring exerts no force on the block when the block is at Point 2, the
spring provides no potential energy to the block when at that point):

       U2,sp= 0.

v.)  At Point 2, the block will have kinetic energy

     KE2 = (1/2)mv2
2.

vi.)  In between Points 1 and 2, "extraneous" work is done by little
sister in the amount of:

  Wsis = Fsis 
. d

         =     F  d  cos φ
         = (Fsis) (d) cos 120o

  = (mg/4)(7d1/8)(-.5)
= -.11 mgd1.

vii.)  In between Points 1 and 2, "extraneous" work is done by fric-
tion in the amount of:

   Wfk
 = fk . d

=     F  d  cos φ
= (fk) (d) cos 180o

= fk(7d1/8)(-1)
= -.875fkd1.

viii.)  To solve this, we need fk.
The easiest way to determine
fk is with Newton's Second Law
(the free body diagram shown
in Figure 6.19 is for the body in
mid-flight--it looks a bit differ-
ent from the fbd for the section
of flight during which the
spring is still engaged, but the
horizontal components are
identical in both cases).  Doing
so yields:
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  ∑ Fx :

           N - Fsis sin θ  = max = 0
                      ⇒     N =  Fsis sin θ

            = (mg/4) sin 60
= .215 mg.

The frictional force is, therefore:

fk = µkN

    = (.4) (.215 mg)
    = .085 mg.

With that, we can determine the work friction does:

Wfk
 = -.875fkd1

         = -.875 (.085 mg) d1
         = -.074 mgd1.

d.)  As we did in the beginning, putting it all together yields:

KE1 +                 ∑  U1                       +                          ∑  Wext                      =     KE2       +     ∑  U2
0 + [   U1,gr        +        U1,sp       ]     + [        Wsis                +       Wfk        

] = (1/2)mv2
2 + [U2,gr + 0]

0 + [mg(d1 + d1/8) +        (1/2)kx2        ]  + [       Fsis
.dsis            +     (-fk)(dfr)     ]  = (1/2)mv2

2   + [mg(d1/4) + 0]

0 + [   mg(9d1/8)  +.5(25.6mg/d1)(d1/8)2] + [(mg/4)(7d1/8)cos120o +  (-µkN)(7d1/8)] = (1/2)mv2
2   +  [.25mgd1 + 0]

0 + [(1.125mgd1) +        (.2mgd1)         ]  + [         (-.11mgd1)        +   (-.074mgd1) ] = (1/2)mv2
2   + [.25mgd1]

      ⇒       v2 = [1.78 gd1]1/2

= [1.78 (9.8 m/s2) (3 m)]1/2

      = 7.23 m/s.

K.  One More Twist--Energy Considerations with Multiple-Body Systems:

1.)  The idea behind the modified conservation of energy equation is that
it is possible to keep track of not only the amount of energy in a system, but
also how the energy is distributed throughout the system.
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2.)  Up until now, all we have examined have been single-body systems.
It is possible to extend the energy considerations approach to take into account
the energy of a whole group of objects.

3.)  Executing this expanded version of the modified conservation of energy
approach:

a.)  Calculate the total kinetic energy (i.e., the kinetic energy of each
body in the system added together) at time t1.

b.)  To that, add the total potential energy (i.e., all potential energy of
all sorts acting on each body in the system, all added together) at time t1.

c.)  To that, add the total extra work done on all the bodies in the
system between times t1 and t2.

d.)  Put the above sum equal to the total kinetic energy plus the total
potential energy in the system at time t2 .

4.)  The modified modified conservation of energy equation thus becomes:

∑KE1,tot + ∑U1, tot + ∑Wextra,tot = ∑KE2,tot + ∑U2,tot.

5.)  Example:  An Atwood
Machine is simply a string
threaded over a pulley with a
mass attached to each end (see
Figure 6.20).  Assuming the
pulley is ideal (i.e., massless and
frictionless) and that m1<m2,
how fast will m1 be moving if the
system begins from rest and
freefalls a distance h meters?

a.)  The system in its
initial state is shown in
Figure 6.20.  Notice that
each body is assigned a
zero gravitational-poten-
tial-energy level of its own.
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FIGURE 6.21
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Note:  We could have assigned a common level, but it is easier the other
way (remember, where the zero is for a given body doesn't matter--it is changes
in potential energy that count).

b.)  Figure
6.21 shows the
system after the
freefall.  Notice
that mass m2
has moved below
its zero-poten-
tial-energy-level,
making the
potential energy
at that point
negative.

Note:  The
amount of work
tension does on m1 is
+T(h), whereas the
amount of work
tension does on m2 is
-T(h).  As such, the two work quantities associated with the tension in the line
add to zero.

c.)  Putting everything together and executing the modified conser-
vation of energy approach, we get:

∑KE1,tot      +           ∑U1, tot   +     ∑Wextra,tot  =         ∑KE2,tot         +         ∑U2,tot.
[KE1,m1

+ KE1,m2
] + [U1,m1

+ U1,m2
] + [T(h) + T(-h)] = [KE2,m1

+ KE2,m2
] + [U2,m1

+ U2,m2
]

[ 0 + 0 ]           +          [ 0 + 0 ]      +          [ 0 ]         = [.5m1v2 + .5m2v2] + [m1gh + m2g(-h)]

⇒    v = [[-m1gh + m2gh] / [.5(m1 + m2)]]1/2.

L.)  Power:

1.)  There are instances when knowing how much work is done by a force
is not enough.  As an example, it may seem impressive to know that a
particular motor can do 120,000 joules of work, but not if it takes ten years for
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it to do so.  The amount of work per unit time being done is often more impor-
tant than how much work can be done.

2.)  The physics-related quantity that measures "work per unit time" is
called power.  It is defined as:

P = W/t,

where t is the time interval over which the work W is done.

3.)  The units for power in the MKS system are kg.m2/s3.  This is the
same as a joules/second, which in turn is given the special name watts.  Although
the watt is a unit most people associate with electrical devices (the light bulb
you are using to read this passage is probably between 60 watts and 150
watts), the quantity is also used in mechanical systems.  Automobiles are
rated by their horsepower.  One horsepower is supposedly the amount of work a
"standard" horse can do per unit time.  As formally defined, one horsepower
equals 746 watts.

4.)  A special relationship is often derived in physics books that relates
the amount of power provided by a force F as it is applied to a body that moves
a distance d with constant velocity v.  Simply presented:

          PF = W/t

        = (F.d)/t
    = F.(d/t)

        = F.v.

This manipulation has been included for the sake of completeness.



Chapter 6--Energy

205

QUESTIONS

6.1)  A net force accelerates a body.  If you multiply that force by the distance
over which it is applied, what will that quantity tell you?

6.2)  A net force F stops a car in distance d.  In terms of F, how much force must
be applied to stop the car in the same distance if its velocity is tripled?

6.3)  An object of mass m moving with speed v comes to rest over a given
distance d due to the effects of friction.  What do you know about the average
frictional force involved (i.e., how large must it have been)?

6.4)  Two masses, m and 2m, both freefall from rest.  Ignoring friction, which
has the greater speed after falling a given distance?  Which has more work done
to it by gravity over that distance?  Is there something to explain here?  If so, do
so.

6.5)  A car slows from 40 m/s to 20 m/s, then from  20 m/s to 0 m/s.  In which
instance (if any) was more energy pulled out of the system?  Reversing the
question, going from zero to 20 m/s requires more, the same, or less energy than
is required to go from 20 m/s to 40 m/s?  Explain.

6.6)  A force is applied to an object initially at rest.  The force acts over a
distance d taking the object up to a speed v.

a.)  If the force had been halved but the distance remained the same, how
would the final velocity have changed (if at all)?

b.)  If, instead, the distance had been halved with the force remaining
unchanged, how would the final velocity have changed (if at all)?

6.7)  What is the ONE AND ONLY thing potential energy functions do for you?

6.8)  An ideal spring is compressed a distance x.  How much more force would
be required to compress it a distance 2x?  How much more energy would be
required to execute this compression?

6.9)  A mass moving with speed v strikes an ideal spring, compressing the
spring a distance x before coming to rest.  In terms of v, how fast would the
mass have to be moving to compress the spring a distance 2x?
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6.10)  A simple pendulum (a mass attached to a swinging string) is pulled back
to an angle θ  and released.  Ignore friction.

a.)  If the mass is doubled, what will happen to the velocity at the bottom of
the arc?

b.)  If the length of the pendulum arm is doubled, how will the velocity at
the bottom of the arc change?

c.)  Is there any acceleration at the bottom of the arc?  If so, how much and
in what direction?

d.)  How much work does tension do as the bob moves from the initial point
to the bottom of the arc?

e.)  How much work does gravity do as the bob moves from the initial point
to the bottom of the arc?

6.11)  There is a toy on the market--a top--that, when
spun, flips itself over (see sketch).  What is the top really
doing as it moves from the one state to the other state?

6.12)  A brick is held above the edge of a table.  Suzy Q
looks at the brick, deduces that if it were to fall it would
land ON the table, and calculates the brick's
gravitational potential energy with that in mind.
In doing so, she comes up with a number N1.  Big
Jack, who happens to have terrible eyesight and
has left his glasses at home, looks at the brick
and decides that if it falls, it will land on the
ground.  He keeps that in mind as he calculates
the brick's gravitational potential energy coming
up with a number N2.  Which potential energy
quantity is correct?  Explain.

6.13)  For a spring system, it is very obvious when
there is no potential energy wrapped up in the position of the spring.  For a
gravitational situation near the surface of the earth, that isn't the case.  What
is the telltale difference between the two situations?

6.14)  Is it possible for:
a.)  Potential energy to be negative?  If yes, give an everyday example.
b.)  Kinetic energy to be negative?  If yes, give an everyday example.
c.)  Work quantity to be negative?  If yes, give an everyday example.
d.)  Power to be negative?  If yes, give an everyday example.
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6.15)  The units of power could be which of the following (more than one are
possible)?

a.)  Joules/sec.
b.)  Watts/sec.
c.)  Kg.m2/s3.
d.)  Nt.m/s.

6.16)  Work is to energy as force is to velocity.  How so?

6.17)  The potential energy function associated with a spring force of -kx is
.5kx2.  What would you expect the potential energy function for a force of -kx5 to
be?  How would you derive such a function?

6.18)  A vehicle moves in the +x direction.  The net
force applied to the vehicle is shown to the right
along with a second graph.  What might that second
graph depict?

6.19)  A force is applied to an object for some period
of time t.  During that time it does W's worth of work.
If the time of contact remains the same but the force is doubled, what will the
ratio of the work quantities be?

6.20)  Assume you have a constant force F = (12 newtons)i that does work on a
moving object as the object travels a distance d = (2 meters)i in time t = 3
seconds.

a.)  At what rate is energy being pumped into the system?
b.)  What is the name given to the quantity you derived in Part a?
c.)  Come up with four different ways to express the quantity named in Part b.
d.)  In the MKS system, what are the units for this quantity and what are

the units called?

6.21)  The graph shows the force F applied to an
object that moves with a constant velocity of .5 m/s
in the -i direction.  Assuming F is oriented along
the x axis:

a.)  What can you say about the other forces
that act in the system?

b.)  How much power does F provide to the
object between t = 1 second and t = 7
seconds?
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c.)  After t = 4 seconds, F's direction changes.  What does that say about the
power associated with F from then on?

d.)  How much power, on average, does F provide between t = 1 second and t
= 4 seconds?

e.)  As an interesting twist, given that the average power provided to the
system between t = 4 seconds and t = 7 seconds is 1.75 watts, how much
work does the force do during that period of time?

6.22)  Let's assume that a car engine provides a constant amount of power.  The
car accelerates from zero to 30 m/s.  Is the car's acceleration constant?

6.23)  A group of students was asked the following question: "In the real world,
what does the power requirement do as you double a car's velocity?"  Assuming
a reasonable answer was expected, what information is missing in the set-up?
That is, what additional information would the students have needed to answer
sensibly?

6.24)  In his younger days, George boasted he could do a million joules of work.
Gertrude, his betrothed, wasn't impressed.  Why do you suppose she wasn't
moved?

6.25)  Three identical springs are attached at the ceiling.  A bar
of mass m is hooked to the group.  If the new system's
equilibrium position is d units below the springs' unstretched
lengths, what must the spring constant be for each spring?  Use
energy considerations to dismantle this problem.
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PROBLEMS

6.26)  A 3 kilogram mass moving at 2 m/s is pulled 35 meters up a 25o

incline by a force F (see Figure I).  If the coefficient of friction between the mass
and the incline is .3:

a.)  How much work
does gravity do as the mass
moves up the incline to the
35 meter mark?

b.)  How much work
does friction do as the mass
moves up the incline to the
35 meter mark?

c.)  How much work
does the normal force do as
the mass moves up the incline to the 35 meter mark?

d.)  How much kinetic energy does the mass initially have?
e.)  WORK/ENERGY PROBLEM: Assuming the mass's velocity at

the 35 meter mark is 7 m/s, use the work/energy theorem to determine
the force F.  Do this as you would on a test.  That is, forget for the moment
that you have done any work above and lay this problem out completely
in algebraic form before putting in numbers.

6.27)  A force F is applied to a mass m = .5 kg as it proceeds up a
frictional hemispherical dome of radius
R = .3 meters.  The force is ALWAYS at
an angle of 12o, relative to the mass's
motion (see Figure II), and is always
equal to mg/4 (that is 1/4 of the mass's
weight).  As the body moves from 20o to
60o up the dome, the distance traveled
is .21 meters.  How much work does F do
on the mass as the body executes that
motion?  Put the numbers in last.

6.28)  How much energy is stored
in a spring compressed 20 centimeters
(.2 meters) if the spring's spring constant
is k=120 nts/m?
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6.29)  Tarzan (mT = 80 kg)
stands on a 12 meter high knoll (see
Figure III).  He grabs a taut, 15 meter
long vine attached to a branch located
17 meters above the ground and swings
down from rest to Jane perched on a 5
meter high mole hill (they breed par-
ticularly big moles in Africa).

a.)  What is Tarzan's veloc-
ity when he reaches Jane?

b.)  What is the tension in the vine when Tarzan is at the bottom of
the arc?  (Note:  Tarzan is moving through a CIRCULAR path).

c.)  What is the tension in the vine just before Tarzan lets go upon
reaching Jane?

6.30)  A 12 kilogram crate starts from rest at
the top of a curved incline whose radius is 2 meters
(see Figure IV).  It slides down the incline, then
proceeds 18 additional meters before coming to
rest.  What is the frictional force between the crate
and the supporting floor (both curved and
horizontal)?  Assume this frictional force is
constant throughout the entire motion.

6.31)  Pygmies use blow-guns and 15 gram (.015 kg) darts dipped in the
poison curare to immobilize and kill monkeys that live in the tree-top canopy of
their forest home.  Assume a pygmy at ground level blows a dart at 85o

(relative to the horizontal) at a monkey that is 35 vertical meters up (over 100
feet).  Assuming a dart must be moving at 4 m/s to effectively pierce monkey
skin, what is the minimum velocity the dart must be moving as it leaves the
blow-gun if it is to pierce the monkey?

6.32)  A freewheeling 1800
kilogram roller coaster cart is found
to be moving 38 m/s at Point A (see
Figure V).  The actual distance
between:

Point A and Point B is 70 meters;
Point B and Point C is 60 meters;
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Point C and Point D is 40 meters, where D is just before the cart enters the
loop.

If the average frictional force acting throughout the motion is 27 newtons,
the radius of the loop is 20 meters, the first hill's height 25 meters, the first dip
15 meters, and the incline just after the loop coming directly off the loop's
bottom at an angle of 30o:

a.)  How fast is the cart moving at Point C?
b.)  How far up the incline d will the cart travel before coming to rest?
c.)  What must the cart's minimum velocity be at Point A if it is to

just make it through the top of the loop without falling out of its
CIRCULAR MOTION (hint, hint).

Note:  The phrase "just making it through the top" means that for all
intents and purposes, the
normal force applied to the
cart by the track goes to
zero leaving gravity the
only force available to
affect the cart's motion at
the top.

6.33)  A spring-loaded
bumper is placed on a 55o

frictional incline plane.  A 60
kilogram crate breaks loose a
distance 3 meters up the incline
above the bumper and
accelerates down the incline (see
Figure VI).  If the average frictional force applied to the crate by the incline is
100 newtons and the spring constant is 20,000 newtons/meter:

a.)  How much will the bumper spring compress in bringing the crate
to rest?  (Assume there is friction even after the crate comes in contact
with the bumper).

b.)  The crate compresses the bumper's spring which then pushes the
crate back up the incline (the crate effectively bounces off the bumper).  If
a total of three-quarters of the crate's kinetic energy is lost during the
collision, how far back up the incline will the crate go before coming to
rest?

6.34)  Because gravitational attraction between you and the earth becomes
less and less as you get higher and higher above the earth's surface, the
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gravitational potential energy function for a body of mass m1 that is a
substantial distance d units away from the earth's surface is not mgh; it is:

    U = - Gm1me/(re+d),

where G is called the universal gravitational constant (6.67x10-11 m3/kg.s2), me

is the mass of the earth (5.98x1024 kg), and re is the radius of the earth

(6.37x106 m).
A satellite is observed moving at 1500 m/s when 120,000 meters above the

earth's surface.  It moves
in an elliptical path
which means its height
and velocity are not
constants.  After a time,
the satellite is observed
at 90,000 meters.
Ignoring frictional
effects, how fast is the
satellite traveling at
this second point?

6.35)  A string of
length L is pinned to the
ceiling at one end and

FIGURE II

m

0

line of
   motion

12o
F

positioning of force
   when mass is at
an arbitrary angle 0

F

frictional
     dome

has a mass m attached to its other end.  If the mass is held in the horizontal
and released from rest, it freefalls down through an arc of radius L until the
string collides with a peg located a distance L/3 from the bottom of the arc (see
Figure VIIa).  From there it proceeds along an arc of lesser radius (i.e., a radius
of L/3).  Assuming one-tenth of the energy in
the system is lost during this collision, what
will the tension T in the string be as the body
moves through the top of its final arc (see
Figure VIIb)?

6.36)  Revisiting Problem 2, let's
assume the average normal force is .4mg over
the run between the angles 20o and 60o up the
dome.  How fast is the mass going when it gets
to the 60o mark if it starts from rest?  You can
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assume a coefficient of friction between the mass the and dome of .6.


